An Efficient Pipelined Implementation of Space-Time Parallel Applications

Toshiya Takami and Daiki Fukudome
Kyushu University

Sep. 10-13, 2013 ParCo’13, Munich

Outline

• Introduction of the standard Parareal-in-time method
 • Limitations of the standard implementation
• New Implementation by the use of an Identity Operator
 • iPareal: Identity Parareal for time evolution problems
 • Convergence property and timelines in applications
• Bucket Brigade Communications and Optimization
 • Overlapping communications and computations
 • Pipelined optimization and its speed-up
• Summary & conclusion

1. Introduction

Parareal-in-Time Method

• Parallelization of strictly dependent calculations:
 • is widely applied to time-domain decomposition problems
 • is applicable to general iterative computations
• Instead of the exact Sequence: \(x_{k+1} = F_k(x_k) \)
• \((r+1)\)-th Approximate Sequence:
 \[x_{k+1}^{(r+1)} = G_k(x_k^{(r+1)}) + F_k(x_k^{(r)}) - G_k(x_k^{(r)}) \]
 • \(G_k(x) \) is a coarse solver, which should be defined by users.
 • For \(r \to \infty \), \(x_k^{(r)} \) converges to the exact sequence \(x_k \).
Large-scale Applications of the Parareal-in-Time Method

• Many-Task Computing:
 • Workshop in SCI11 (Seattle): MTAGS
 • Technical Paper in SC12 (Salt Lake City)

• Space-Time Parallelism:
 • A massive space-time parallel N-body solver

1. Introduction

Speedup Ratio by the Standard Parareal-in-Time Method

• Speedup Ratio:
 \[S = \frac{T_f}{T_g + T_c + \frac{R(T_f + T_c)}{K}} \]
 \(T_c, T_f, T_g \): costs of communication, and computation \(T_k(x), G_k(x) \)
 \(P \): the number of resources used for the time direction
 \(R \): the order of approximation
 \(K \): length of the series (= P+R-1)

1. Introduction

Limitations of the Standard Parareal-in-Time Method

• A tailor-made coarse solver \(G_k(x) \) is necessary:
 • \(G_k(x) \) must be faster than \(F_k(x) \) and a good approximation.
 • The final speedup is bounded by \(T_f / (T_g + T_f) \).

• The program is relatively complicated because of dependent communications between processes:
 • difficulty in fine tuning of the communications

We introduce ‘iParareal’:
Identity operator is used as the coarse solver

1. Introduction

iParareal Algorithm

• An identity operator (doing nothing) is used instead of the coarse solver \(G_k(x) \).

 iParareal iteration formula:
 \[x_{k+1}^{(r+1)} = x_k^{(r+1)} + F_k(x_k^{(r)}) - x_k^{(r)} \]

• Note that convergence is limited to the following case:
 • Continuous time evolutions represented by a small \(dt \)
 \[x(t_k + dt) = F(x(t_k)) \iff x(t_{k+1}) = x(t_k) + \frac{\partial F}{\partial x} dt + \cdots \]
 which include almost all explicit time evolutions
Convergence: MD (1)

* Convergence property of molecular dynamics simulations
 * time evolution: symplectic integrator
 * a liquid cluster with 249 Ar atoms (~80K)
 * 2nd order symplectic integrator (SI) (Velocity Verlet method):
 \[
 x_j(t + \Delta t) = x_j(t) + \left[v_j(t) + \frac{F_j(t)}{2m} \Delta t \right] \Delta t
 \]
 \[
 v_j(t + \Delta t) = v_j(t) + \frac{F_j(t) + F_j(t + \Delta t)}{2m} \Delta t
 \]
 * Higher order SIs are constructed by multiple 2nd order SIs.

Convergence: MD (2)

* a is the order of the SI, r is the order of the iParareal.
* Errors by iParareal is limited by that of the original SI.

Convergence: Quantum Mech. (1)

* Quantum time evolutions are represented by unitary transformations:
 \[
 |\psi(t + \Delta t)\rangle = \exp \left(\frac{\Delta t}{i\hbar} H(t) \right) |\psi(t)\rangle \equiv \hat{U}_{\Delta t}(t) |\psi(t)\rangle
 \]
* If you note \(|\psi(t + \Delta t)\rangle = \{ I + [\hat{U}_{\Delta t}(t) - I] \} |\psi(t)\rangle\), it is realized that iParareal is applicable to this kinds of problems.
 * |\psi(t)\rangle, |\psi(t + \Delta t)\rangle : normalized complex vectors
 * \(\hat{U}_{\Delta t}(t)\) : unitary matrix
 * iParareal relation for quantum time-evolutions:
 \[
 |\psi^{(r+1)}(t + \Delta t)\rangle = |\psi^{(r+1)}(t)\rangle + (\hat{U}_{\Delta t}(t) - I) |\psi^{(r)}(t)\rangle
 \]

Convergence: Quantum Mech. (2)

* Because of linearity, its convergence is proven by the use of the spectral radius \(\rho(\hat{U}_{\Delta t}(t) - I)\).
* Errors of \(r\)-th iParareal for matrix-vector multiplications:
 * solid: numerical results, dashed: estimation by \(\rho(\hat{U}_{\Delta t}(t) - I)\)
 \[
 \frac{|x_k - x_k^{(r)}|}{|x_0|} \leq \sum_{j=0}^{r-1} \left(k \atop j \right) \left[\rho(\hat{U}_{\Delta t}(t) - I) \right]^j
 \]

Configuration of iParareal

- Without $g_k(x)$ calculations, we can efficiently configure the time parallel computations.
- The limit of the speedup is extended to T_f / T_c

![Diagram of iParareal configuration](image)

Timelines of iParareal (1)

- To obtain timelines over multiple nodes:
 - Adjust clocks between different nodes
 - Measure by MPI_Wtime or other time functions
 - Gather and visualize the timeline data
- Visualized example:
 - $|\psi(t)|$, $|\psi(t + \Delta t)|$ 2048 elements
 - $U\Delta t(t)$: 2048 x 2048
 - $P=4, R=4$: $K=P+R-1=7$
 - Speedup: 1.73

Timelines of iParareal (2)

- 8 (space) x 16 (time)
 - 4.03 msec x 19 \Rightarrow 16.25 msec
 - Speedup: 4.71
- 16 (space) x 8 (time)
 - 2.19 msec x 11 \Rightarrow 13.20 msec
 - Speedup: 1.82

Bucket-Brigade Communications

- The bucket-brigade communication is
 - One dimensional neighbor collective communication with simple calculations
 - Dependent on neighboring processes
 - Implemented by MPI
- k-th resource in time direction:
 - Receives x_k from the adjacent resource
 - Calculates $x_{k+1} = x_k + y_k$
 - Transfers x_{k+1} to the next process
Measurement and Visualization

- Example: Bucket Brigades over 12 nodes:
 - Procedure of the measurement:
 1. Calibrate clocks
 2. Record by MPI_Wtime
 3. Visualize the result
 - Machine and conditions:
 - CX400: Xeon cluster connected by InfiniBand FDR
 - 1 process in each node

Performance of Bucket Brigades

- Results of the measurement:
 - Latency is dominant for small data
 - Large fluctuation is observed

Non-blocking Communications

- Blocking Communications by MPI_Recv / Send
 - Sequential execution: MPI_Recv, Calculation, MPI_Send
 - No overlaps between communications and other works
- Non-blocking Communications by MPI_Irecv / Isend
 - Pipelined bucket-brigades by dividing data into smaller one
 - Overlapping with other works

Speedup by Pipelining

- Expected speedup:
 \[S_p = \frac{(T_c + T_a)(K - 1)}{\left(\frac{T_c + T_a}{P} + T_l\right)(K - 1) + \max(T_c, T_a)(P - 1)} \]

 - \(T_c \): communication time, \(T_a \): time for calculation (add), \(T_l \): latency of communication, \(K \): # of stages, \(P \): subdivision
Summary & Conclusions

* We introduced `iParareal' to parallelize time evolutions.
 * iParareal made us free from defining the coarse solver $G_k(x)$.
* Convergence and performance of iParareal were shown.
 * Applicable to MD and quantum time evolutions.
 * It is practically used to accelerate time evolutions.
* We analyzed the bucket-brigade communication pattern
 which was abstracted from communications in iParareal.
 * Performance was measured and its timeline was shown.
 * We showed that pipelining is effectively applied for speedup.

Future Works

* To apply the pipelined bucket-brigade communication to
 iParareal method, and to confirm its performance.
* A large-scale computation of the bucket-brigade
 communications and iParareal method.
* To provide iParareal interface and the bucket-brigade
 communication API for application programmers.
* Auto or dynamic tuning functions to obtain appropriate
 parameters for bucket-brigade communications.
 * ...

Thank you for your attention!

* This work is supported by JST CREST.